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Figure 1: A CNN-LSTM model leveraging the mapping between physical characteristics and perceptual haptic attributes of
textures to map physical surfaces onto a five-dimensional haptic attribute space.

ABSTRACT
This paper introduces a framework to predict multi-dimensional
haptic attribute values that humans use to recognize the mate-
rial by using the physical tactile signals (acceleration) generated
when a textured surface is stroked. To this end, two spaces are
established: a haptic attribute space and a physical signal space.
A five-dimensional haptic attribute space is established through
human adjective rating experiments with the 25 real texture sam-
ples. The physical space is constructed using tool-based interaction
data from the same 25 samples. A mapping is modeled between the
aforementioned spaces using a newly designed CNN-LSTM deep
learning network. Finally, a prediction algorithm is implemented
that takes acceleration data and returns coordinates in the haptic
attribute space. A quantitative evaluation was conducted to inspect
the reliability of the algorithm on unseen textures, showing that
the model outperformed other similar models.
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1 INTRODUCTION
When a textured surface is stroked, a wide range of tactile signals
are generated. Humans perceive the signals and are able to gauge
the multi-dimensional attributes of their texture [16, 25, 36]. The
conversion from the signals into multi-dimensional attributes is
done very quickly and efficiently in the human cognitive process
and is one of the more salient human abilities to function in daily
life interactions. The perceived attributes are used to recognize the
material, identify the object, and eventually perform any tasks that
are required. To this end, the role of tactile data on human behavior
has been intensively studied [20, 22, 23, 30].

The sensing process of this conversion can be mimicked by com-
puters. The signals are sensed by computers and material attributes
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Figure 2: Overall framework. Texture dataset: a dataset containing real-world textures was prepared. Data preparation: es-
tablishing haptic attribute space and physical signal space using the dataset. Network training: a CNN-LSTM based model
learning the relationship between the two spaces. System evaluation: an evaluation conducted to see the predictability of haptic
attributes for a new/unseen texture.

of the surface from which the signals are captured can be predicted
with the help of sophisticated algorithms. This is one of the essential
capabilities needed for humanoid robots and has been investigated
in the field of robotics [7, 23, 26, 30]. These studies largely focused
on the prediction of the physical attributes, while their perceptual
effect has mostly been less studied. From a robotic interaction point
of view, it makes sense for the robots to only be concerned with the
physical attributes of the texture, however, when the said robots
interact with humans, the perceptual aspect of the physical signals
should also be considered. The estimation of attributes is also very
beneficial in the field of haptics where the core interest is to deliver
synthetic touch feedback to humans. For instance, in a bilateral
teleoperation scenario, a remote robot directly estimates attributes
of the touched surface and sends them back for saving bandwidth
without compromising the perceptual performance. In addition, au-
tomatic conversion is very useful for haptic content generation and
authoring. Editing, authoring, and describing haptic texture would
be much easier in a perception-based attribute space than in a phys-
ical value space, e.g., slightly increasing the roughness attribute
of a texture model, and blending or interpolating two textures in
attribute space. Such a system would enable direct composition of
arbitrary texture models guided by the perceptual attribute scale
(like creating colors with an RGB model), which would greatly
facilitate texture content creation.

Integral to establishing a direct link, between the human per-
ception of textures and the physical signals generated, is the auto-
matic bi-directional conversion between the signals and attributes
of texture. There are several required components to realize such
a system. First, establishing the two spaces, i.e., the physical sig-
nal space and the texture attribute/perception space. Hereinafter
the texture perception space would be referred to as the haptic
attribute space. Second, modeling the causation chain between the
two spaces. Third, devising an algorithm to honestly estimate the
haptic attributes of textures from their physical signals such that
the established causation chain is upheld. Fourth, an algorithm
that can traverse the causation chain in reverse and generate true

physical signals from a set of haptic attributes. To the best of our
knowledge, such an endeavor has not yet been undertaken in the
existing literature. This paper is our first step towards realizing
the aforementioned system, and as an initial proof of concept, we
embark upon the first, second, and third components.

Various researchers have touched upon the individual snippets
of the aforementioned system. After the initial attempts for the
fundamental comprehension of haptic perceptual characteristics
and their mapping onto the haptic perceptual space [12, 16, 25, 36],
several recent works have tried to foresee the perceptual effect of
different physical characteristics of surface textures. For example,
in [27], the authors have predicted the surface dissimilarities of 10
textures by comparing the corresponding probability distributions
of collected physical tactile signals. In another example, the Gel-
Sight sensor was employed at the end effector of a robotic arm to
establish a physical signal space by analyzing surface geometry
and shear force [5]. Some researchers have also attempted to create
virtual textures with varying perceptual attributes [24], where they
created 12 virtual textures and explored force-based perceptual
characteristics on the general force feedback using Hooke’s Law
force model. However, the aforementioned and other similar studies
considered did not consider the two spaces jointly in their predic-
tion algorithms. These studies also failed to consider the general
transition or study the causation chain between the two spaces.

The establishment of the attribute space is guided by the method-
ologies introduced in the literature. A general approach to defining
underlying determinants of texture perception is to create a haptic
perceptual space by performing psychophysical experiments. The
experimental results are analyzed by using multi-dimensional scal-
ing, yielding a perceptual space. Oftentimes, the dimensions of the
perceptual space are realigned to be defined by attributes/adjectives.
Generally, these perceptual spaces are comprised of three to five
dimensions depicting ratings of different perceptual attributes as-
signed by human participants (e.g., hardness, warmth, roughness,
etc.). More details on this alignment and dimensional structuring
can be seen in [12, 16, 25, 36].
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The current paper starts with establishing the two spaces, as
illustrated in Fig. 2. In the first step, a 5-dimensional haptic attribute
space is instituted through a perceptual user study involving 25
real texture samples, creating a framework for understanding how
human participants perceive different textures. Simultaneously, the
physical space is assembled using 3D acceleration signals captured
with a rigid tool. These signals, guided by interaction force and
speed, allow for an empirical representation of the textures’ physical
properties. For each texture sample, a data-driven texture rendering
model is constructed, and subsequently used to estimate the 3D
acceleration signals for arbitrary values of interaction force and
speed.

The next phase involves modeling the relationship between the
physical and perceptual attributes, which constitutes a significant
component of this study. We designed a 1D-convolutional neural
network (1D-CNN) combined in parallel with a long-short-term
memory (LSTM) network. This hybrid approach is trained with
the data from the two spaces established earlier, where the input
is the 3D acceleration data, and the output or labels are the per-
ceptual attributes. Once the network is trained, it is hypothesized
to be able to predict the perceptual attributes of textures based on
interaction signals. The efficacy of the prediction ability of the net-
work is gauged by carrying out a numerical evaluation that shows
promising results.

2 ESTABLISHING HAPTIC ATTRIBUTE SPACE
An adjective rating experiment is conducted to establish a haptic
attribute space using real-world textures. In the first part, partici-
pants were asked to choose attributes that they felt could effectively
describe the surface textures. In the second part, they rated surface
textures based on the attribute pairs. These adjective ratings as-
signed by users are then used to populate a haptic attribute space.
This section describes the details of the samples and the experi-
ments.

2.1 Texture Dataset
In this study, twenty-five real-world textures were used to establish
the space (see Fig.3). The texture dataset is selected in such a way
that the majority of textures that we encounter everyday can be
represented (e.g., textiles, fabrics, paper, wood, glossy, meshes, rub-
ber, and foil ). These real texture materials were cut and mounted
on hard acrylic plates in order to avoid the effect of underlying
objects during the experiments. The size of the acrylic and texture
surface was set to 100x100x5 mm. Liquid surface glue was used to
stick these textures on acrylic.

2.2 Participants
A total of 12 healthy participants (seven male and five female) with
ages ranging from 23 to 30 years took part in this experiment. They
reported no disabilities that could hinder their ability to take part in
this experiment. The participants were compensated 10,000 KRW
for their participation, which is equivalent to approximately 8.5
USD. The same participants took part in both the sub-experiments.

Figure 3: The real-world texture dataset used in this study.

Table 1: The list of adjectives used in experiment 1 of es-
tablishing the haptic attribute space. The boldface names
are the ones that were selected for forming the antonymous
adjectives pairs and had a relevance score of 50 % or more
according to the participants.

Sticky Uneven Flat Even Irritating
Rough Rigid Dense Bumpy Pleasant
Sharp Thick Slippery Dull Sparse
Smooth Prickly Thin Soothing Soft
Fine Metallic Hard Pointy Abrasive

2.3 Experiment 1: List of Attributes
The main objective of the first part was to assemble a list of adjec-
tives that can define the perceptual attributes of texture surfaces
used in this study. The list would be narrowed down by the par-
ticipants and the results would be used in the second part of this
experiment.

Experimental Setup. For the experiment, the participants sat
down on a chair in front of a table. They were wearing headphones
playing white noise to mask interaction noises with the texture.
They were handed a printed paper containing experimental instruc-
tions. One texture sample was handed to the participant at a time.
The sample was placed in a box with an opening for a hand. The
mode of interaction was with a tool of length of 14 cm. The tip of
the tool was 7mm in diameter.

Procedure. An initial list of 25 adjectives (see Table 1) that could
describe the perceptual attributes of the given textures was com-
piled. These adjectives were some of the most commonly used
adjectives in literature [12, 13, 17, 24, 34, 35]. The participants were
asked to select adjectives (from the provided list) that they think
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Figure 4: The left side of the figure shows the experimental
setup for the adjective rating experiment. In the middle, the
GUI is displayed with the five antonymous adjective pairs for
rating. On the right, is the rigid tool used in the experiments.

can define the perceptual characteristics of the given texture sam-
ple. They were asked to answer with either a "1" if they thought
that an adjective was relevant for the current texture, or a "0" if the
adjective was irrelevant. Each participant explored all the texture
samples. They were allowed to use any exploration strategy that
suited their preference and they were allowed to interact for as
long as they wished.

Results. The scores received by each adjective for all the textures
were added and normalized to form the relevance score. The adjec-
tives that received at least a 50 % relevance score were selected for
further processing. A total of 14 adjectives were shortlisted based
on this criterion. The adjectives that had an antonymous pair within
the 14 adjectives were selected and the remaining were discarded.
These adjectives were utilized to form antonymous pairings, such
that they represented the opposite extremes of the same property.
As a result, five antonymous pairs of adjectives (i,e., Rough-Smooth,
Flat-Bumpy, Sticky-Slippery, Hard-Soft, and Irritating-Pleasant)
were selected for the next part of the experiment.

2.4 Experiment 2: Adjective Rating
In the second part of the experiment, the same participants were
asked to rate each texture sample in terms of the five adjective pairs
selected in the earlier experiment. This rating would represent the
textures in a five-dimensional attribute space where each dimension
is an adjective pair.

Experimental setup. The participants sat on a chair in front of a
desk. A computer was placed on the desk in front of the participant.
The computer was running a graphical user interface (GUI) which
was used for rating the textures by the participants. The GUI had
the five adjective pairs with a slider for each pair. The adjectives
from each pair were located at the opposite extremes of the slider.
The length of the slider was 127 mm on screen and did not have
any scale markings on it [17]. One texture sample was provided
at a time in a box that had an opening for the participant’s hand.
Participants interacted with the texture sample with a tool using
their left hand, while the data entry was carried out by a computer
mouse in their right hand. The experimental setup and GUI can be
seen in Fig. 4.

Procedure. The participants were asked to interact with each
texture (one at a time) and rate them according to the five adjective
pairs that appeared on the screen. They were instructed to move
the slider in the direction of a particular adjective depending on
how strongly they perceived that particular property. For instance,
on the Rough-Smooth scale, a value of zero (slider on the extreme
left) represented that the texture was extremely rough. On the same
scale, a value of 100 (slider on the extreme right) would mean that
the participant found that texture to be extremely smooth. The
participants were allowed to interact with the textures as many
times as they deemed fit and use any exploratory strategy of their
liking.

Results. The results from this experiment were in the form of
ratings ranging from zero to 100. The ratings were averaged for all
participants. The averaged result was in the form of five rating val-
ues (for each attribute pair) for each texture, as shown in Fig. 5. Each
rating represents two adjectives located at the opposite extremes.
The five attribute pairs are used to establish the haptic attribute
space where each texture is represented by a five-dimensional per-
ceptual value.

It must be noted that in some literature the adjective ratings are
derived in a slightly different manner. Generally, a perceptual space
is established from dissimilarity data of textures and the adjective
ratings are regressed into the perceptual space. The perceptual
space is then projected onto the adjective ratings, which provide
the finalized attribute values. However, the current study directly
uses the adjective ratings provided by the users as it serves the
purpose of this endeavor. The key difference between the two is that
the former preserves the nominal distances between the textures
without regard for the scale, whereas the latter also preserves the
scale that was used by the participants. Second, the goal of the
current study is to predict haptic attributes of texture, therefore,
it was important to imperative to use the user-provided ratings in
their original form.

3 ESTABLISHING PHYSICAL SIGNAL SPACE
When interacting with a textured surface with a rigid tool [11], we
perceive high-frequency vibrations containing textural character-
istics of the surface. The vibration is originated from the contact
dynamics between the micro-geometry of the surface and the tool.
The contact dynamics are dependent on the user’s applied interac-
tions, i.e., scanning speed and applied force. Thus, a texture sample
in the physical signal space is defined as a set of pairs of an accelera-
tion signal and corresponding interaction parameters, i.e., scanning
speed and normal force at which the acceleration signal is sampled.

The goal of this work is to find a mapping chain from the physi-
cal space to the attribute space so that the perceptual attributes of a
textured surface can be predicted from acceleration-interaction sig-
nal pairs collected from the surface. In order to accurately train the
mapping function, input data should be extensive and systematic:
the data should cover all the combinations of interaction parameters
in order to preserve the respective change in acceleration patterns
reflected by the applied interactions and to restrain the possible
coherence between texture signals of different textures.

Under manual stroking, extensive and systematic controlling
of the interaction parameters, i.e., scanning speed and pushing
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Figure 5: The mean adjective ratings ranked by 12 human participants. The counterpart of each pair shows the extreme of
the entity on the y-axis, e.g., in a Rough-Smooth pair ’0’ represents the extremely rough surface whereas 100 represents the
extremely smooth surface.

force pairs, is very difficult, e.g., scanning while keeping constant
scanning speed and force. It is well known that deep learning net-
work training needs a large amount of data. Uncontrolled manual
stroking followed by automatic data segmentation can be an alter-
native, but it still does guarantee even and well-distributed samples.
Employing a robotic palpator is not feasible in many cases as well.

In this work, we employ a simulation model-based synthetic
data generation. Many previous works have proven that the state-
of-the-art data-driven haptic texture modeling algorithms could
successfully generate “measurement-realistic (analogous to photo-
realistic in graphics)” acceleration signals [1, 4, 18]. By utilizing
these algorithms, a data-driven model is established using real inter-
action with sparse measurements. This model is used to synthesize
acceleration signals under desired interaction parameters.

In the current study, it was decided to use a data-driven texture
modeling algorithm by Abdulali et al. [1]. The benefit of using
this algorithm is that it can produce not only perceptually but also
physically accurate acceleration signals for any arbitrary interac-
tion. For instance, the Goodness-of-Fit Criterion (GFC) value for
the estimated power spectrum of acceleration is greater than 0.9
for most of the textures as claimed by the authors [1, 2], which is
considered a very accurate match of the measured and synthesized
acceleration signal [3]. Moreover, this algorithm is accompanied
by a pre-made haptic texture library consisting of 100 real-world
texture surfaces including textures used in this study. This makes
it an optimal choice for our work.

Acceleration signals for all 25 textures were synthesized using
the framework. Unlike the original approach in [1] that includes the
direction of scanning velocity as one of the interaction parameters
to deal with anisotropic textures, the present study follows the
method reported in [11] which uses only the magnitude of velocity
and force, since all the samples in the current dataset are isotropic.
For each texture, signals are synthesized under scanning speeds
of 50, 100, 150, 200, and 250 mm/s and at a pushing force of 0.1,
0.2, 0.3, 0.4, and 0.5 N. Each signal is generated for a duration of

one second. A complete combination (5 by 5) yields 25 unique
acceleration profiles containing 1000 samples each at a 1000 Hz
sampling rate. These 25 acceleration signals are then concatenated
to create a single acceleration profile with 25000 data points for
every texture containing diverse tactile information with desired
scanning parameters. This process is repeated for each texture. For
more details about generating signals from this library readers can
refer to [1, 11].

4 PROPOSED CNN-LSTM NETWORK
Recently, deep learning-based approaches showed promising results
in a number of haptic-related applications. For instance, authors in
[37] implemented a CNN based architecture for surface material
classification and achieved noticeable accuracy. Authors in [18]
proposed a deep spatio-temporal network to synthesize acceleration
signals for isotropic and anisotropic textures. In [14], researchers
employed AlexNet [19] with two additional layers of CNN and
generated the haptic signal for desired haptic texture.

Motivated by the aforementioned works, we propose a new deep-
learning model to predict perceptual adjective ratings of a texture
from interaction acceleration signals. It is noted that one of the
key advantages of using a deep-learning approach is that the input
and output dimensions can be reliably expanded, making it more
adaptable and valuable in addressing scalability challenges. The
proposed deep-learning structure consists of a 1D-CNN stream and
one LSTM stream to effectively capture the spatial and temporal
characteristics present in acceleration signals to predict the absolute
value of perception attributes. The proposed architecture named the
CNN-LSTM model can be visualized in Fig.6. Further information
on the model is provided in the following subsections.

4.1 1D Convolution Neural Network
Convolution Neural Networks(CNNs) use convolution as the linear
operation within the layer to extract the numerous hidden features
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Figure 6: A block diagram of the proposed CNN-LSTM net-
work. The left part shows the proposed CNN stream, and the
right part depicts the proposed LSTM stream. The features
extracted from CNN and LSTM streams are fused and passed
to the dense layers to predict the adjective pairs.

[21]. These networks have been widely used in vision-based tasks
such as image classification and showed exceptional results [19, 28].
The effectiveness of CNN networks is also proven in audio-related
applications, from speech recognition to audio recognition. More-
over, these works led to the foundation for CNN to be explored in
haptic relation applications. For example, in [18], authors claimed
that they have effectively captured spatial features from accelera-
tion signals in order to synthesize perceptually similar signals.

Motivated by these works, we design a 1D-CNN network to
capture spatial features from acceleration signals which consist of
six convolutional layers and two max-pooling layers to capture
diverse spatial characteristics through a variety of filters and to
avoid over-fitting, respectively. The first convolution layer contains
32 filters with a 1×4 kernel while the second convolution layer
contains 64 filters of size 1×4 followed by a max-pooling layer of
size 1×2. A total of 128 filters are employed for the third convolution
layer with a 1×4 kernel size while the fourth convolution layer
contains 128 filters of 1×3 kernel size. The last two convolution
layers contain 64 and 32 filters respectively with 1×3 kernel size.
Finally, the second max-pooling operation is applied over a window
size of 1×2 to reduce the dimension and avoid overfitting.

4.2 Long Short–Term Memory (LSTM):
While having the ability to extract spatial features, CNN lacks in
securing temporal information for time series data. In contrast,

Recurrent Neural Networks (RNNs) can process time series data
efficiently but they experience vanishing gradient problems during
back-propagation. To overcome this limitation of traditional RNN,
Long short-term memory (LSTM) networks, able to handle and
store information for longer periods of time were introduced [15].
LSTM accomplishes this by employing three gates that control the
flow of information and a memory cell that stores information
over multiple time steps. For more details about the LSTM network
readers can refer to [6], [33]

The proposed structure of the LSTM stream is designed to enable
the extraction of long-short-term features, essential for understand-
ing temporal dependencies in the interaction data, as shown in Fig.
6. It is composed of four LSTM layers. The first layer employs 128
units of LSTM, followed by two layers containing 256 units each.
The last layer of the proposed LSTM stream consists of 128 units.
The output of this final layer is passed onto the concatenation layer
after applying the flattening operation.

4.3 CNN-LSTM Network Training
1) Model Input. The proposed network is designed to predict the

ratings for five adjective pairs by taking the acceleration signal 𝑥
along with corresponding scanning speed 𝑣 , and force 𝑓 as input
𝑆 (i.e., 𝑆 = [(𝑥1, 𝑣1, 𝑓1), ..., (𝑥𝑛, 𝑣𝑛, 𝑓𝑛)]. Furthermore, in order to
effectively capture the spatial-sequential dynamics of the time-
series signal and to reduce the input sequence size of the proposed
network, the input signal 𝑆 is divided into short sequences of size
200 samples.

2) Training Method. The training of the proposed CNN-LSTM
model is performed jointly so that it can learn the dynamics caused
by spatial and sequential information. First, the segment from 𝑆

of size 200 is passed to 1D-CNN and LSTM stream as input. After
applying convolution and max-pooling operations, the 1D-CNN
stream produces a spatial feature vector of size 320. On the other
hand, the LSTM produces a temporal feature vector of size 128.
These spatio-temporal features extracted from 1D-CNN and LSTM
are then flattened and concatenated, yielding the joint feature vec-
tor of size 448 passed to the batch normalization layer to avoid
overfitting. In the next step, these normalized features are passed
onto two subsequent Dense layers consisting of 128 and 32 nodes
respectively. Lastly, a regression layer is employed to produce ab-
solute adjective pair values. We used TensorFlow-Keras Library to
implement and train our model. The number of epochs was set to
200 and RelU was employed as an activation function. Root Mean
Square error (RMSE) was used as a loss function, while the Adam
optimizer was found to be effective with a learning rate of 0.001.

5 EVALUATION
In this section, we aim to verify the reliability and generalizability
of the proposed framework: how well it has learned the mapping
between texture’s tactile information and perceptual attributes.
First, the predicted results of the proposed framework are presented
for each of the attributes-pair, then these results are compared
against other machine-learning and deep-learning approaches such
as linear regression, 1D-CNN, LSTM, and CNN-LSTM.
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Figure 7: Predicted and measured attribute ratings for each
texture.

5.1 Leave One Out Cross Validation
Leave-one-out cross-validation (LOOCV) is used to validate the
proposed framework[29]. LOOCV is a special type of k-fold evalu-
ation technique in which one observation of the entire dataset is
used as a validation set, whereas the remaining n-1 observations
are used for training purposes. This process is repeated n times to
obtain unbiased results, where n is the total number of observations
present in the dataset [32].

In this experiment, the model is trained with the synthesized
data from the texture samples (see Section2). Each training cycle
consists of 24 textures out of 25, while one texture data were kept
as the test subject. Its adjective rating was predicted based on the
corresponding texture’s tactile signal. This experimentwas repeated
25 times while keeping the number of epochs set to 200. One of the
advantages of using LOOCV is to evaluate the generalizability of
the proposed system while predicting the adjective ratings for each
of the textures without being used while training.

5.2 Results and Discussion
The values of the adjective ratings predicted by the proposed CNN-
LSTM, i,e., Rough - Smooth (R-S), Flat - Bumpy (F-B), Sticky - Slip-
pery (S-S), Hard - Soft (H-S), and Irritating - Pleasant (I-P) in con-
trast to the perceptual rating assigned by human participants can
be seen in Fig 7. It can be observed that for most of the textures, the
predicted values are very close to the actual ratings which are in
between the 0 to 100 range. Mean Absolute error (MAE) and Root
Mean Square Error (RMSE) were computed by using predicted and
actual ratings, for each adjective pair to quantitatively summarize
the prediction performance. From table 2, it can be observed that
the F-B attribute showed the lowest MAE and RMSE score of 5.451
and 7.008 respectively. While S-S showed the highest MAE score of
8.683 and RMSE score of 11.813.

Table 2: Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) of 5 Adjective-pairs for the proposed CNN-
LSTM model

Adjective Pair MAE RMSE
Rough-Smooth 6.552 9.371
Flat-Bumpy 5.451 7.008
Sticky-Slippery 8.683 11.813
Hard-Soft 6.452 8.992
Irritating-Pleasant 7.082 9.555

Table 3: Root Mean Square Error (RMSE) values of the pro-
posed system and other four approaches for each of the ad-
jective pair.

Approaches R-S F-B S-S H-S I-P
Linear Regression 52.59 55.90 49.25 25.74 31.07
1D-CNN[31] 30.39 25.25 24.66 18.95 35.73
LSTM [8] 40.52 32.04 28.75 24.93 16.41
CNN-LSTM[9] 20.45 22.29 22.74 17.93 14.83
Proposed CNN-LSTM 9.37 7.00 11.81 8.99 9.55

Figure 8: Comparison of the proposed model with other ap-
proaches.

The performance of the proposed CNN-LSTM is also investigated
against other well-established approaches such as linear regression,
1D-CNN [31], LSTM [8], and CNN-LSTM [9]. These methods were
chosen as they have proven their capability to handle time series
data, making them appropriate for our task and providing a mean-
ingful evaluation landscape. TensorFlow 2.7, a deep-learning library,
was used to implement the aforementioned 1D-CNN, LSTM, and
CNN-LSTM models. The training parameters were set as similar as
possible to the parameters described by their authors in [31], [8],
[9] for a fair comparison. Besides, the Scikit-learn library was used
as an implementation tool for the classical Linear regression algo-
rithm. It is noted that the final layer of the compared CNN-LSTM,
originally proposed for activity recognition using time-series data,
was modified to align with the specific requirements of this study.

Table 3 shows the Root Mean Square Error of the proposed model
and the other four approaches while Fig. 8 shows the MAE results.
According to the results of the experiment, the proposed CNN-
LSTM model achieved the lowest RMSE score of 9.371, 7.008,11.813,
8.992, and 9.555 for R-S, F-B, S-S, H-S, and I-P, respectively. On the
other hand, the linear regression algorithm produced the highest
RMSE scores for R-S, F-B, S-S, and H-S adjective pair (see Table.
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3). For the I-P adjective pair, 1D-CNN showed the worst perfor-
mance with a 35.738 RMSE score, and apart from this, 1D-CNN
depicted a slightly better performance than LSTM. It is also noted
that CNN-LSTM proposed in [9] performed better than 1D-CNN,
LSTM, and linear regression but its performance remained inferior
to the proposed CNN-LSTMmodel. Possibly, this is because the pro-
posed structure employs CNN and LSTM in two different streams
unlike [9]. The two-stream scheme strengthened us to capture spa-
tial information without losing the long-short-term dependencies.
Moreover, a diverse number of kernels in the 1D-CNN stream with
multi-scale window sizes were used to obtain spatial information
at different scales. Thus, the proposed structure performed better
than the other four approaches in terms of MAE and RMSE.

It can be seen in Fig. 8 that the F-B pair exhibited the best perfor-
mance among all attributes. It is possible that the defining compo-
nents for bumpiness in acceleration signals are more articulate than
other features. Overall, the MAE for all adjective pairs remained less
than ten, and the authors in [10] showed that the Just Noticeable
Difference (JND) for the perceptual similarity of haptic textures
can be assumed to around 10 out of 100.

Limitations. The proposed CNN-LSTMmodel demonstrated promis-
ing results in predicting haptic attributes for most textures but
faced challenges with certain materials like aluminum, artificial
grass, and rubber. Three main factors could have contributed to
these challenges. The specific interaction between the rigid tool
used to obtain acceleration signals and the unique characteristics
of these materials might have affected the model’s performance
on these surfaces. Additionally, the method used to average the
ratings from participants could have introduced variability that
influenced the prediction accuracy. Meanwhile, the Leave-One-Out
Cross-Validation (LOOCV) technique, often considered beneficial
for providing an estimate with low bias, might have contributed to
high variance in the error rates on these particular surfaces. Despite
these challenges, the proposed approach performed well on the ma-
jority of the textures. Future work will focus on complementing the
LOOCV technique with other evaluation techniques and expanding
the input space, potentially enhancing the model’s precision in
predicting haptic attributes for an even broader range of textures.

6 CONCLUSIONS
In this work, an algorithm is introduced to establish a reliable
and accurate mapping between haptic attribute space and physi-
cal signal space. To achieve this goal this study leveraged a deep
learning-based approach and designed a model containing 1D-CNN
and LSTM networks. A key benefit of using this structure is that
it can extract complex spatial-sequential dynamics of acceleration
profiles to predict haptic attributes of unseen textures. Furthermore,
it demonstrated the reliability of the deployed approach by compar-
ing it with other existing methods, and the results showed that the
proposed model outperformed these well-established alternatives.

One possible future direction is to improve the prediction perfor-
mance of the proposed approach by accommodating more textures
into the existing dataset and with an increased number of input
dimensions, such as direction or orientation of interaction. A larger
dataset with extended information would allow the model to ex-
tract more diverse and in-depth features of surface topography. It

will also improve the precision of predicting haptic attributes for a
newly encountered surface.
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