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Abstract 

An acceleration signal is generated when a 

person interacts with the surface of an object, 

which carries pertinent information about the 

surface material. This acceleration signal is 

unique to each surface and can be used to 

recognize the surface texture of an object. In 

this paper we developed a new transformer-

based deep learning model for surface texture 

classification from haptic data. This approach 

leverages the self-attention process to learn 

the complex patterns and dynamics of time-

series data. To the best of our knowledge this 

is the first time that the transformer or its 

variants are used for surface texture 

classification using tactile information. As a 

proof of concept, we collected data for 9 

different textures and the evaluation 

experiments showed that the model achieved 

state-of-the-art classification accuracy. 
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1. Introduction 

In past decade texture classification has 

attracted many researchers due its wide-

ranging applications in robotics such as 

transmitting surface features from an 

exploratory remote robot. These features can 

be collected through a rigid tool by stroking it 

over a surface, which produces vibrations that 

can uniquely characterize the corresponding 

surface and reveal its rich haptic attributes 

[1]. On the contrary object identification and 

recognition have widely been performed in the 

area of computer vision. 2D and 3D features 

form images have been used to classify object 

and its surface. Unlike tactile based 

approaches, vision-based approaches require 

optical sensors which can be restricted by 

occlusion and lightning constraints [2]. 

Recently signal analysis and recognition are 

done by deep learning-based approaches. In 

[3] CNN is employed to perform signal  

 

 

Figure 1. Hardware for sample-set recording  

recognition. Moreover, in [4] 1D-CNN and 

Bi-LSTM are used in vehicle network anomaly 

detection.  

The works cited above served as inspiration 

for this paper, we develop a novel haptic 

texture classification approach based on 

Transformer architecture [5]. Unlike aligned-

sequence models such as CNN, RNN, LSTM 

and their variants, transformer-based model 

does not process data in ordered sequence 

manner. Instead, it analyzes the complete 

sequence of data and use self-attentional 

mechanisms to understand how the data are 

interconnected. Therefore, Transformer-

based models have the capacity to model time 

series data with complicated dynamics that are 

difficult for sequence models to process. In 

this work we used 9 different textures to 

show that our transformer-based model can 

be used for texture classification. The major 

contribution of this work are as follows: 

• A transformer-based model for texture 

classification using tactile data. 

• Results show that the model achieved 

state of the art classification accuracy. 

The remaining paper is structured as follows. 

Section 2 contains detailed explanation of 

collected dataset and proposed transformer 

model. Section 3 discusses evaluation results 

and lastly in Section 4 we conclude our work.  



2. Classification Approach 

In this section, the proposed attention based 

deep learning network scheme will be 

elaborated by starting with the explanation of 

data recording (Section 2.1), followed by the 

proposed surface texture classification model 

(Section 2.2).  

2.1 Hardware Setup and Dataset 

Our Hardware setup consists of interaction 

tool and one sensor attached to it (see Fig. 

1(a)). Accelerometer (ADXL335; Analog 

Device, having resonant frequency of 5.5 kHz 

and a noise level of 0.126 m/s2) enables us to 

measure the acceleration of the interaction 

tool tip. To record these acceleration signals 

we connected accelerometer to the portable 

data acquisition device (USB-6220; National 

Instrument).   

In our study, 9 samples in three different 

groups are prepared (see Fig. 1(b)).  The first 

group consists of fabric material, the second 

group consist of steel and plastic meshes 

while the third group is wooden samples. For 

each texture we collected acceleration data 

for 10 seconds with 3KHz sampling frequency 

in 2 different trials. One trial is used for 

training and another for evaluation. Recorded 

acceleration signal is also band pass filtered 

within the range of 25Hz and 1000Hz in order 

to remove gravity component, noise and the 

effect of purposeful human motion. 

Subsequently to reduce dimensionality of the 

recorded three axis acceleration signal we 

mapped these signals onto a single axis using 

DFT321 algorithm [6]. For the input to our 

deep learning model, we have also normalized 

the recorded signal so that each texture 

profile lies within the range of -1 to 1. After 

preprocessing we have segmented these 

acceleration signal into 500 samples window 

in time domain. These segments are used as 

the input to our Transformer Network. 

2.2 Haptic Transformer Network 

An overview of our Transformer-based Haptic 

texture classification network can be seen in 

Fig 2. Our model partially follows the original 

Transformer Architecture [5] as we only 

deployed transformer encoder block and did 

not use decoder block. The transformer 

encoder architecture is considered sufficient 

in time-series classification applications [7] 

Figure 2. Transformer Network for Haptic Texture 

Classification 

while encoder-decoder network performs well 

in time-series forecasting tasks [8]. 

Additionally, the word-embedding layer was 

eliminated because it was part of the original 

transformer scheme, which was used to do 

Natural Language Processing (NLP) tasks, and 

it was utilized to transform word sentences to 

numerical vectors. 

The input to our network is the segments of 

preprocessed single-axis acceleration signals 

collected from each texture while the output is 

class label vector. These input signals first go 

through positional encoding. This step is 

essential to encode the sequential information 

of the input signal and it can be performed by 

element-wise addition of the input vector with 

a positional encoding vector. We used sine and 

cosine function encoding in our work [8]. 

Vector containing input acceleration signal 

along with position embedding is then fed into 

three encoder layers containing three 

attention heads. We chose the dimension of 

each encoder as (500,1). Each encoder layer 

is identical and contains two sub layers: self-

attention sub layer and feed forward sub layer. 

We used 1D-CNN with kernel size (1x1) and 

Relu as its activation function followed by a 

fully connected layer as a feed-forward sub 

layer. Moreover, each sub-layer is also 

followed by a normalization layer. To make a 

final prediction, the encoder block output is 



sent as input to the Dense Layer followed by 

Softmax layer of size (1 x 9). The Softmax 

layer produces probability distribution vector 

for all classes and final corresponding class 

can be reported by the maximum probability 

label.  

Training Parameters: Through a number of 

training sessions, we selected the optimum 

hyperparameters for the model. Finally, 

Adamax was employed as model optimizer 

with learning rate of 0.001 and batch size of 

32. Sparse categorical cross entropy as loss 

function was used while the number of epochs 

was set to 500. Additionally, we used dropout 

as regularization technique for each of the 

encoder layers to boost the classification 

performance and prevent the model over-

fitting. 0.2 dropout-rate is used for each layer. 

3. Results  

In this section we present results from our 

transformer-based model. These findings 

come from the test acceleration profiles, 

which are different from the training 

acceleration data. During evaluation we 

followed the same preprocessing steps 

described in Section 2.1. Accuracy, Precision, 

Recall, and F1 score are the four performance 

evaluation metrics used in the experiment. 

Each performance index is calculated by the 

confusion matrix. Table 1 depicts the results 

of aforementioned evaluation metrics while 

Fig 3 exhibits the mean accuracy of each 

texture.   It is noted that our proposed model 

achieved average accuracy of 98.87% and F1 

score of 96.89 % which shows the significance 

of attention-based (Transformer) algorithm in 

texture classification applications. 

Table 1. Performance evaluation metrics 

Performance Metrics Results 

Accuracy 

Recall 

Precision 

F1 Score 

98.87% 

97.1% 

96.7% 

96.89 % 

4. Conclusion 

In this work, we proposed a transformer- 

based model for texture classification using 

haptic data. We observed that our model 

exhibited the compelling performance and 

 Figure 3. Accuracy score for each texture  

achieved 98.87% average accuracy on 

collected dataset. Although real world 

applications have plenty of objects with 

various surface textures. Therefore, in the 

future we would like to show the effectiveness 

of our algorithm with more textures.  
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